R & D NOTES

A Mathematical Model for Polymerization of Styrene with *n*-Butyllithium in Cyclohexane

THOMAS R. LANDON and RAYFORD G. ANTHONY

Department of Chemical Engineering
Texas A&M University, College Station, Texas 77843

In the design, optimization, and control of polymerization reactors, it is desirable to have a mathematical model which can be used to estimate molecular weight distributions (MWD) and monomer and initiator conversions for a given set of reactor conditions. While many theoretical models have been proposed in the literature, a limited amount of work has been presented which supports the proposed models with experimental data. The objective, therefore, of this study was to obtain data which could be used in evaluating the kinetic parameters in a model for predicting MWD and monomer and initiator conversions in the styrene-butyllithium-cyclohexane system. These new data should also add to the understanding of this polymerization system.

Styrene conversions, molecular weights, and molecular weight distributions were measured as a function of time in batch reactors. Butyllithium conversions were calculated as follows:

$$X_I = \frac{M_0 X_m}{I_0 \overline{D}_n}$$

These data are presented in Table 1. Bottle polymerization techniques were utilized and the MWD's were determined by use of Gel Permeation Chromatography. An empirical relation was developed to correct for the effect of dispersion on the average molecular weights. Detailed experimental procedures are presented by Landon (1971).

The initiation reactions in this system are very complex; therefore, by use of nonlinear regression the following equation was developed:

$$R_{I}' = I_0 \frac{dX_I}{d\tau} = k_1 I^{1/6} + k_2 I_0^{-2.35} M_0^{1.8} I^{2.25} P_T^{1.6}$$
 $k_1 = 1.093 \times 10^4 \exp\left[\frac{-5577}{T}\right];$

$$\left(\frac{L}{m}\right)^{1/6} \frac{1}{\min}$$

Correspondence concerning this note should be addressed to R. G. Anthony. T. R. Landon is with E. I. du Pont de Nemours, Orange, Texas.

$$k_2 = 0.63 \times 10^{19} \exp \left[\frac{-13195}{T} \right];$$
 $\left(\frac{L}{m} \right)^{3.3} \frac{1}{\min}$

By following the procedures presented by Edgar et al. (1970) the following equations for calculating the monomer conversions, molecular weights, and molecular weight distributions can be derived for an association-disassociation mechanism:

$$M_0 \frac{dX_m}{d\tau} = R_I' + \alpha P_T$$
 $\alpha = \frac{k_p}{1/2 + \sqrt{1/4 + 2K_P^{-1}P_T}}, \quad P_T = I_0 X_I$
 $D_n = \frac{M_0 X_m}{I_0 X_I}$

$$D_{w} = 1$$

$$+ \frac{2 \int_{0}^{\tau} \left\{ R_{I^{'}} \int_{\tau_{1}}^{\tau} \alpha d\tau_{2} \right\} d\tau_{1} + \int_{0}^{\tau} R_{I^{'}} \left\{ \int_{\tau_{1}}^{\tau} \alpha d\tau_{2} \right\}^{2} d\tau_{1}}{M_{0} - M}$$

$$W_{j} = \frac{jP_{j}}{M_{0} - M}$$

$$= \frac{j}{M_{0} - M} \left\{ \int_{0}^{\tau} \left\{ R_{1}' \exp \left[- \int_{\tau_{1}}^{\tau} \alpha d\tau_{2} \right] \right] \frac{1}{(j-1)!} \left[\int_{\tau_{1}}^{\tau} \alpha d\tau_{2} \right]^{j-1} \right\} d\tau_{1} \right\}$$

The numerical methods which were used to evaluate the differential equations were the Runge-Kutta and Eulers procedure. The integrals were evaluated by Simpson's and the trapezoidal rule. After an equation for the initiation reactions was obtained, the grouped propagation constant k' and the values of k_P and k' were evaluated by minimizing the sum of the squares of deviation on styrene conversion plus the square of k' deviation of the weight average molecular weight. The values of k_P , k', and k' are reported in Table 2.

GPC data as a function of time are on permanent files, Department of Chemical Engineering, Texas A&M University.

TABLE 1. EXPERIMENTAL DATA

Run	Real	Monomer	Initiator				
number	time, min	conversion	conversion	Tau	Dn	Dw	Dw/Dn
ΙA	10	0.087	0.145	9.6	120	153	1.28
I A	20	0.187	0.179	18.2	209	307	1.47
I A	30	0.285	0.246	25.6	231	360	1.56
ΙA	40	0.429	0.299	32.3	287	419	1.46
ΪA	50	0.552	0.388	37.6	284	429	1.51
ΙA	60	0.664	0.564	41.5	235	410	1.74
I A	70	0.738	0.544	44.5	271	480	1.77
I A	73	0.766	0.635	45.2	241	432	1.79
I A	90	0.877	0.592	48.3	296	454	1.53
I A	110	0.935	0.579	50.1	323	466	1.45
I A	240	0.995	0.672		298	485	1.63
I B	10	0.090	0.069	9.6	131	168	1.29
I B	20	0.196	0.112	18.2	175	245	1.40
I B	30	0.294	0.163	25.6	180	293	1.63
ΙB	30	0.319	0.150	25.6	213	300	1.41
I B	40	0.493	0.203	31.6	243	347	1.43
I B	50	0.618	0.281	36.3	220	347	1.58
I B	50	0.576	0.251	36.3	228	355	1.56
I B	60	0.686	0.245	39.8	280	379	1.36
I B	70	0.771	0.294	42.5	263	382	1.46
ΙB	87.25	0.875	0.294	45.6	298	406	1.37
I B	110	0.952					
II A	5	0.055	0.077	4.88	143	200	1.41
II A	10	0.205	0.218	9.28	188	306	1.62
II A	20	0.559	0.446	15.35	250	376	1.50
II A	35	0.837	0.624	19.46	268	425	1.58
II A	80	0.980	0.673	22.20	2 91	454	1.56
II B	5	0.093	0.072	4.77	127	178	1.39
II B	5	0.091	0.050	4.77	185	291	1.58
II B	10	0.264	0.154	8.87	171	235	1.34
II B	15	0.426	0.213	12.05	200	293	1.47
II B	20	0.647	0.284	14.24	228	388	1.70
II B	35	0.910	0.374	16.91	243	356	1.47
II B	40	0.967	0.441	17.14	219	403	1.83
II B	60	0.983	0.363	17.57	271	435	1.61
II B	80	0.990	0.407	17.80	24 3	380	1.56
III A	2.5	0.11	0.08	2.4	277	486	1.79
III A	5	0.22	0.193	4.43	227	302	1.33
III A	7.5	0.51	0.33	6.2	320	567	1.76
III A	10	0.64	0.495	7.16	259	393	1.52
III A	12.5	0.79	0.52	8.24	300	550	1.83
III A	15	0.86	0.567	8.74	303	440	1.45
III A	20	0.925	0.566	9.04	327	450	1.38
III A	25	0.945	0.651	9.41	290	441	1.52
III A	35	0.97	0.591	9.74	328	461	1.41
III A	60	0.995	0.634	2.90	314	468	1.49
III B	2.5	0.143	0.147	5.13	195	293	1.51
III B	5	0.596	0.509	6.75	234	361	1.54
III B	7 .5	0.860	0.691	7.21	249	373	1.50
III B	10	0.910	0.778	7.54	230	330	1.41
III B	15	0.985	0.834	7.61	226	349	1.48
III B	20	0.99	0.820	7.64	241	350	1.45
III B	60	1.00	0.782		256	400	1.56
			-		_50	200	1.00

RUN I-A $M_0 = 1.00$ g moles/liter $I_0 = 0.005$ g moles/liter Temperature = 30°C Scavenger level = 0.0015 g moles/liter

RUN II-A $M_0 = 1.0$ g moles/liter $I_0 = 0.005$ g moles/liter Temperature = 40° C Scavenger level = 0.0015 g moles/liter

RUN III-A $M_0 = 1.00$ g moles/liter $I_0 = 0.005$ g moles/liter Temperature = 50°C Scavenger level = 0.0015 g moles/liter

RUN I-B $M_0 = 1.00$ g moles/liter $I_0 = 0.010$ g moles/liter Temperature = 30°C Scavenger level = 0.0015 g mole/liter

RUN II-B $M_0=1.0$ g moles/liter $I_0=0.10$ g moles/liter Temperature = 40°C Scavenger level = 0.0015 g moles/liter

RUN III-B $M_0 = 1.5$ g moles/liter $I_0 = 0.0075$ g moles/liter Temperature = 50° C Scavenger level = 0.0015 g moles/liter

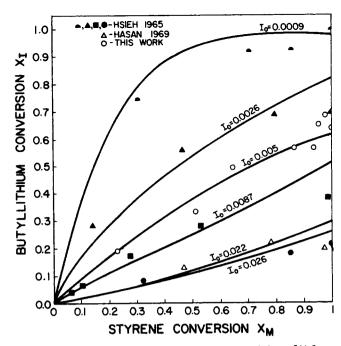


Fig. 1. Theoretical curves compared with experimental data: $[M_0] =$ 1 mole/liter; temp. = 50°C.

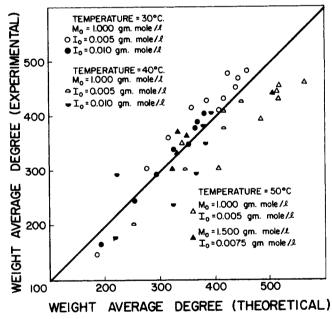


Fig. 2. Weight average degree experimental vs. weight average degree theoretical for Runs I A & B, II A & B, III A & B, 30°C, 40°C, and 50°C.

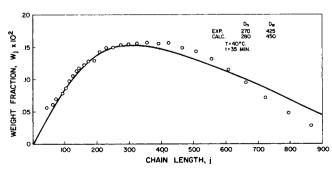


Fig. 3. Molecular weight distribution, Run II-A.

TABLE 2. CONSTANTS FOR PROPAGATION REACTION

T°C	$k' (L/m)^{\frac{1}{2}}$ $1/\min$	k_p L/m min ⁻¹	K_{p}
30° C	$0.494 \pm 5\%$	407	2.94×10^{-6}
40°C	$1.34 \pm 5\%$	438	18.87×10^{-6}
50°C	$3.4 \pm 5\%$	467	105.3×10^{-6}

 $k' = 1.72 \cdot 10^{18} \exp(-18,778/RT) = k_p / \sqrt{2K_p} = k_p / \sqrt{K_p} / \sqrt{2} = A'$

 $\exp \left(-E/RT\right)$. $k_p = 4043 \exp \left(-1382/RT\right) = A_p \exp \left(-E_p/RT\right)$. $K_p = 3.656$ • $10^{39} \exp \left(-34,790/RT\right) = C_T^2/A_T = CONST$.

 $\exp (-\Delta H_d/RT)$.

T°K and R = 1.9872 cal/g mole °K.

As illustrated in Figures 1, 2, and 3, good agreement was obtained between the calculated and experimental values of styrene and butyllithium conversions, molecular weights, and MWD. For those cases where the percentage deviation of calculated weight and number averages were less than 10%, the calculated MWD was a good representation of the measured MWD.

The value of K evaluated at 30°C. is equal to the value reported by Hsieh (1965, 1966). The \hat{k}' calculated at 50°C. was about 50% greater, however, as illustrated in Figure 1; the calculated conversions are in good agreement with those reported by Hsieh.

ACKNOWLEDGMENT

The support of this project by the National Science Foundation, the Texas Engineering Experiment Station, and Alcoa is greatly appreciated. The authors also appreciate the encouragement and assistance provided by H. L. Hsieh of Phillips Petroleum Company and John Moore of Dow Chemical Company.

NOTATION

 A_T , C_T , P_T = concentrations of total associated, active and dead polymer

 k_1 , k_2 , k_1' , k_p , K_P = rate constants and equilibrium con-

M, I = monomer and initiator concentrations

 D_n , D_w = number and weight average degree of polymer-

 X_m , X_I = monomer and initiator conversions

 W_i , P_i = weight fraction and concentration of polymer of j-monomer units

= subscript refers to initial conditions 0

T = temp., °K

= pseudo time = $\int_0^t M dt$ or $d\tau = Mdt$

LITERATURE CITED

Edgar, T. D., S. Hasan, and R. G. Anthony, "A Mathematical Model for the Polymerization of Isoprene, Styrene, or Butadiene with Alkyllithiums in a Batch Reactor," Chem. Eng. Sci., 25, 1463 (1970). Hasan, S., "Batch Polymerization of Styrene and Isoprene by

n-Butyllithium Initiators," M.S. thesis, Texas A&M Univ.,

College Station (1970).

Hsieh, H. L., "Kinetics of Polymerization of Butadiene, Isoprene, and Styrene with Alkyllithium, Part III—Rate of Initiation, Part III—Rate of Propagation," J. Polymer Sci., A3, 163, 173 (1965).

-----, and O. F. McKinney, "Relationship between the Hetrogeneity Index and the Kinetic Ratio of Anionically Polymerized Polymers," Polymer Letters, 4, 843 (1966).

Landon, T. R., "Batch Polymerization of Styrene Initiated by n-Butyllithium in a Cyclohexane Solvent," M.S. thesis, Texas A&M Univ., College Station (1971).

Manuscript received March 20, 1972; note accepted March 20, 1972.